Computational and experimental study of the mechanism of hydrogen generation from water by a molecular molybdenum-oxo electrocatalyst.

نویسندگان

  • Eric J Sundstrom
  • Xinzheng Yang
  • V Sara Thoi
  • Hemamala I Karunadasa
  • Christopher J Chang
  • Jeffrey R Long
  • Martin Head-Gordon
چکیده

We investigate the mechanism for the electrocatalytic generation of hydrogen from water by the molecular molybdenum-oxo complex, [(PY5Me(2))MoO](2+) (PY5Me(2) = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine). Computational and experimental evidence suggests that the electrocatalysis consists of three distinct electrochemical reductions, which precede the onset of catalysis. Cyclic voltammetry studies indicate that the first two reductions are accompanied by protonations to afford the Mo-aqua complex, [(PY5Me(2))Mo(OH(2))](+). Calculations support hydrogen evolution from this complex upon the third reduction, via the oxidative addition of a proton from the bound water to the metal center and finally an α-H abstraction to release hydrogen. Calculations further suggest that introducing electron-withdrawing substituents such as fluorides in the para positions of the pyridine rings can reduce the potential associated with the reductive steps, without substantially affecting the kinetics. After the third reduction, there are kinetic bottlenecks to the formation of the Mo-hydride and subsequent hydrogen release. Computational evidence also suggests an alternative to direct α-H abstraction as a mechanism for H(2) release which exhibits a lower barrier. The new mechanism is one in which a water acts as an intramolecular proton relay between the protons of the hydroxide and the hydride ligands. The calculated kinetics are in reasonable agreement with experimental measurements. Additionally, we propose a mechanism for the stoichiometric reaction of [(PY5Me(2))Mo(CF(3)SO(3))](+) with water to yield hydrogen and [(PY(5)Me(2))MoO](2+) along with the implications for the viability of an alternate catalytic cycle involving just two reductions to generate the active catalyst.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst†‡

We recently reported the catalytic generation of hydrogen from water mediated through the in situ reduction of the molybdenum(IV)–oxo complex [(PY5Me2)MoO] 2+ (1; PY5Me2 1⁄4 2,6-bis(1,1-bis(2pyridyl)ethyl)pyridine) at a mercury electrode. To gain further insight into this unique molecular motif for hydrogen production, we have now examined the competence of this complex for the catalytic reduct...

متن کامل

Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which...

متن کامل

Comparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...

متن کامل

Decontamination of DMMP by adsorption on ZnO, A Computational Study

Ab initio calculations at the density functional theory (DFT) and the second-order Møller−Plessetperturbation theory levels with 6-31+G(d), 6-31G(d) basis sets for non-metal atoms and LANL2DZfor metal have been performed for the adsorption of dimethyl methylphosphonate (DMMP) on ZnOby Gaussisn 98 program. The calculated rotational constants by B3LYP/6-31G(d) are in moreagreement with the experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 11  شماره 

صفحات  -

تاریخ انتشار 2012